| Process | α_P | τ(z) at z=0 | H(z)_P/H_intrinsic | Time Dilation | Physical Meaning |
|---|
1. Sound Horizon: r_d(τ) ≈ 77 Mpc (vs. ΛCDM's 147 Mpc) - Solves Lyman-α BAO
2. Hubble Tension: CMB (α=1.0) → H₀≈67.4; BAO (α=0.367) → H₀≈73.0; SNe (α=0.73) → H₀≈73.0
3. JWST High-z Galaxies: α_P → 1.0 at high z alters time dilation
4. Particle Anomalies: Different α_P for muon vs B-meson decays
5. Quantum Critical Point: Time reversal at z = 2942
1. Cosmic Time Field τ(z): Determined by competition between:
• Information growth operator: m_b ≈ ln(2) ≈ 0.730
• Geometric constraint operator: m_p = 2/3 ≈ 0.667
2. Quantum Information Connection:
\[ \alpha_P = -0.309300 + 0.466797 \cdot \log_{10}\left(\frac{\log_2(N_P)}{\eta_P}\right) \]
• N_P: Number of quantum states in process P
• η_P: Geometric/entropic efficiency (0 < η_P ≤ 1)
3. Observable Consequences for Process P:
• Hubble parameter: H(z)_P = H_intrinsic(z) × τ(z)^{-(1-α_P)}
• Comoving distance: D_M(z)_P ∝ ∫₀ᶻ dz' τ(z')^{1-α_P}
• Time dilation: Δt/Δτ_P = τ(z)^{α_P-1}
• Age appearance: Age_apparent = Age_true × τ(z)^{α_P-1}
• Hubble constant: H₀(α) = 67.4 × 0.732 × α^{-0.4} (from Python analysis)